INTRODUCTION

Simple contrast and neutralization system.
- Idealized example of palatalization, following Carroll (2012); basic constraint types from McCarthy & Prince (1995, 1999).
 - Specific markedness: */ʃ*/ — violated by [ʃ] (i.e., unpalatalized consonants in palatalizing contexts).
 - General markedness: */f*/ — violated by [ʃ] (i.e., palatalized consonants generally).
 - Faithfulness: *s*/ — violated by any change in its [ʃ] sequence (i.e., from palatalized to unpalatalized consonants and vice-versa).

Factorial typology.
Note: [a/]/ represents the complementary set of non-palatalizing contexts.

1. Full Contract
 - [a/][ʃ/]
 - [a/][ʃ/]
 - [a/][ʃ/]
 - [a/][ʃ/]

2. Contextual neutralization
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]

3. Complementary distribution
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]

4. Absolute neutralization
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]

5. Reverse neutralization
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]
 - [ʃ/][ʃ/]

Type 1: anywhere within the candidate form.

In general, gang effects in HG behave like Type 1 conjunctions.

Adding a Type 1 conjunction C₁&(...&Cₙ) to an HG constraint set will not increase the size of its typology because it does not create any new distinctions between candidates.

Adding a Type 1 conjunction C₁&(...&Cₙ) to an OT constraint set will increase the size of its typology because it distinguishes between dependent and independent conjunct violations.

Type 2: within a shared domain (i.e., segment, syllable, etc.).

Adding a Type 2 conjunction C₁&(...&Cₙ) to an HG constraint set will increase the size of its typology because it distinguishes between domain-local and non-local violations of the conjuncts.

Adding a Type 2 conjunction C₁&(...&Cₙ) to an OT constraint set will increase the size of its typology because it distinguishes between dependent and independent conjunct violations.

This distinction is orthogonal to our result; see Fukazawa & Miglio (1998), Padgett (2002), Lubowicz (2005), Legendre et al. (2006), and Pater (2016).

REFERENCES

